OLS Regression Results
Dep. Variable: temperature_norm R-squared: 0.778
Model: OLS Adj. R-squared: 0.777
Method: Least Squares F-statistic: 693.6
Date: Sun, 09 Feb 2025 Prob (F-statistic): 1.29e-66
Time: 12:29:12 Log-Likelihood: -133.31
No. Observations: 200 AIC: 270.6
Df Residuals: 198 BIC: 277.2
Df Model: 1
Covariance Type: nonrobust
coef std err t P>|t| [0.025 0.975]
const -1.271e-16 0.033 -3.79e-15 1.000 -0.066 0.066
latitude_norm -0.8820 0.033 -26.336 0.000 -0.948 -0.816
Omnibus: 19.398 Durbin-Watson: 1.440
Prob(Omnibus): 0.000 Jarque-Bera (JB): 11.222
Skew: 0.423 Prob(JB): 0.00366
Kurtosis: 2.205 Cond. No. 1.00


Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.