OLS Regression Results
| Dep. Variable: | temperature_norm | R-squared: | 0.778 |
| Model: | OLS | Adj. R-squared: | 0.777 |
| Method: | Least Squares | F-statistic: | 693.6 |
| Date: | Sun, 09 Feb 2025 | Prob (F-statistic): | 1.29e-66 |
| Time: | 12:29:12 | Log-Likelihood: | -133.31 |
| No. Observations: | 200 | AIC: | 270.6 |
| Df Residuals: | 198 | BIC: | 277.2 |
| Df Model: | 1 | | |
| Covariance Type: | nonrobust | | |
| coef | std err | t | P>|t| | [0.025 | 0.975] |
| const | -1.271e-16 | 0.033 | -3.79e-15 | 1.000 | -0.066 | 0.066 |
| latitude_norm | -0.8820 | 0.033 | -26.336 | 0.000 | -0.948 | -0.816 |
| Omnibus: | 19.398 | Durbin-Watson: | 1.440 |
| Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 11.222 |
| Skew: | 0.423 | Prob(JB): | 0.00366 |
| Kurtosis: | 2.205 | Cond. No. | 1.00 |
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.