OLS Regression Results
Dep. Variable: | temperature_norm | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.005 |
Method: | Least Squares | F-statistic: | 0.04253 |
Date: | Sun, 09 Feb 2025 | Prob (F-statistic): | 0.837 |
Time: | 12:31:53 | Log-Likelihood: | -283.77 |
No. Observations: | 200 | AIC: | 571.5 |
Df Residuals: | 198 | BIC: | 578.1 |
Df Model: | 1 | | |
Covariance Type: | nonrobust | | |
| coef | std err | t | P>|t| | [0.025 | 0.975] |
const | -1.271e-16 | 0.071 | -1.79e-15 | 1.000 | -0.140 | 0.140 |
longitude_norm | -0.0147 | 0.071 | -0.206 | 0.837 | -0.155 | 0.125 |
Omnibus: | 1423.927 | Durbin-Watson: | 0.037 |
Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 25.855 |
Skew: | -0.118 | Prob(JB): | 2.43e-06 |
Kurtosis: | 1.254 | Cond. No. | 1.00 |
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.