OLS Regression Results
Dep. Variable: temperature_norm R-squared: 0.000
Model: OLS Adj. R-squared: -0.005
Method: Least Squares F-statistic: 0.04253
Date: Sun, 09 Feb 2025 Prob (F-statistic): 0.837
Time: 12:31:53 Log-Likelihood: -283.77
No. Observations: 200 AIC: 571.5
Df Residuals: 198 BIC: 578.1
Df Model: 1
Covariance Type: nonrobust
coef std err t P>|t| [0.025 0.975]
const -1.271e-16 0.071 -1.79e-15 1.000 -0.140 0.140
longitude_norm -0.0147 0.071 -0.206 0.837 -0.155 0.125
Omnibus: 1423.927 Durbin-Watson: 0.037
Prob(Omnibus): 0.000 Jarque-Bera (JB): 25.855
Skew: -0.118 Prob(JB): 2.43e-06
Kurtosis: 1.254 Cond. No. 1.00


Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.