OLS Regression Results
| Dep. Variable: | temperature_norm | R-squared: | 0.000 |
| Model: | OLS | Adj. R-squared: | -0.005 |
| Method: | Least Squares | F-statistic: | 0.04253 |
| Date: | Sun, 09 Feb 2025 | Prob (F-statistic): | 0.837 |
| Time: | 12:31:53 | Log-Likelihood: | -283.77 |
| No. Observations: | 200 | AIC: | 571.5 |
| Df Residuals: | 198 | BIC: | 578.1 |
| Df Model: | 1 | | |
| Covariance Type: | nonrobust | | |
| coef | std err | t | P>|t| | [0.025 | 0.975] |
| const | -1.271e-16 | 0.071 | -1.79e-15 | 1.000 | -0.140 | 0.140 |
| longitude_norm | -0.0147 | 0.071 | -0.206 | 0.837 | -0.155 | 0.125 |
| Omnibus: | 1423.927 | Durbin-Watson: | 0.037 |
| Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 25.855 |
| Skew: | -0.118 | Prob(JB): | 2.43e-06 |
| Kurtosis: | 1.254 | Cond. No. | 1.00 |
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.